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I. Introduction 

Let G be a finite group and let K be an algebraically closed field of  characteristic 
p > 0. Suppose that M is a finitely generated KG-module. The purpose of  this paper 
is to investigate the cohomology ring 

~(M) = ~° c (M) = E x t r a  (M, M) --- H*(G, Homr(M,  M)). 

Let egt(M)=ExttKc(M,M). In [4] it was proved that an element of gt(M) is 
nilpotent if and only if its restriction to every elementary abelian p-subgroup of  G 
is nilpotent. Here we expand on this result by showing that if G is elementary 
abelian, then the nilpotency of  an element in gt(M) depends on that of  the 
restrictions of the element to cyclic shifted subgroups, i.e. to certain cyclic 
subgroups of the group of units of  KG. The radical of  ¢(M) is then characterized 
in terms of restrictions to shifted subgroups. Using these results we get a new proof  
of a theorem of  Avrunin and Scott [2] which asserts the equality of  two varieties 
associated to M. An example of an indecomposable module M such that  
,~ :M) /Rad  ~(M) is not commutative is given in the last section. 

For the case in which the prime p is 2, the main theorem and some of  its 
consequences were proved in [3]. The proof for the general case, that we give here, 
is significantly different in that  it employs a nontrivial spectral sequence argument. 
Although we use no results f rom [2], its necessary to adopt the Avrunin-Scott  point 
of view. Specifically we regard KG as a truncated polynomial ring or equivalently 
as the restricted enveloping algebra of  a commutative Lie algebra. The resulting 
Hopf  algebra structure yields a cup product that commutes with restrictions to 
shifted subgroups. The theorem that is proved concerns only g(M) whose product 
is independent of  the coalgebra structure. 

Throughout  the paper all KG-modules will be assumed to be finitely generated. 
.. L/t is a KG-module, then f2(M) is the kernel of  the surjection PM~M where PM 
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is a projective cover of  Mr. For  t > l ,  g2 t is defined inductively by g2t+](M)= 
g2(I2t(M)). These modules are unique up to isomorphism [7]. I f  H is a subgroup 
of  G or a shifted subgroup of  KG, let M/. /denote the restriction of  M to a KH. 
module. 

2. Preliminaries 

Throughout  this section G =(x~, . . . ,  xn) is an elementary abelian group of  order 
p"  and K is an algebraically closed field of  characteristic p.  Given a basis ct ], . . . ,  a n 

of  g n, let G '  be the subgroup of  the group of  units of  KG generated by u],. . . ,  u n 
where 

n 

ui = ] + , ijxj 
j = l  

for ai=(aia, ...,ai,,) and Xj = x j -  1. 
Now G'  is an elementary abelian group of  order p"  and the inclusion map 

G ' + K G  induces an algebra isomorphism KG'-+KG by linear extension (see [3]). 
A shifted subgroup of  KG is defined to be a subgroup of  the group of units of  KG 
of  the form H = ( u l ,  ..., ut} for ul, ..., ut as above. In particular ct 1, . . . ,  a t must be 

linearly independent.  The left module KG is free as a KH-module and 

K(G' /H)  = KG/KG(Rad KH). 

Using the above statement as a definit ion we shall write K(G/H)  for K (G ' / H)  even 
when H is not  a subgroup of  G. 

If  ct e K n, a ~ O, then let uc, = 1 + ~, otiX i. We define the rank variety of  a KG- 
module M to be 

V(M) = {0} k J { a e K  n I M<uo> is not a free K(ua)-module }. 

It is known that V(M) is a homogeneous affine variety. Its dimension is the com- 
plexity of M (see [3]). Also M is a free module if  and only if  V(M) = {0}. 

In order to deal with cup products and restrictions to shifted subgroups effectively 
we must use a Hopf  algebra structure that  is different from the usual one. We view 
KG as a truncated polynomial ring KG=K[X] , . . . ,  X n ] / ( X  ~, ..., XPn). If  M and N 
are KG-modules then the action of  KG on M ® N = M ® x N  is given by 

Xi(m ®n) = (X im)®n + m ® X i n  

for m e M ,  n e N .  Also if f ~ H o m x ( M , N ) ,  then 

(Xif)(m) = Xi "f(m) - f (Xim).  

So if u a = 1 + ]~ a,Xi = 1 + Ua, then 

U,,(m®n)= Uc, m ® n  + m ®  U,~n, and (Uaf)(m)= Ua f (m) -  f(Uc, m). 
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Using this coalgebra structure we get a cup product action of g(K)= Ext~,o(K, K) 
on £ (M)= Ext~-c(M, M). The cup product satisfies the associative laws and g(M) 
is a finitely generated module over g(K) [6]. The reader should be warned that in 
general the cup product does depend on the coalgebra structure (see (11.3) of [3]). 
However we will consistently use the one given above and no problems arise. The 
product in g(M) is independent of  the Hopf  algebra because it can be obtained from 
the Yoneda splice operation on equivalence classes of long exact sequences [10]. 

More especially, with this coalgebra structure, for any KG-module M, we can 
ceflne for Ext~:o(K, M) a spectral sequence with respect to a shifted subgroup H. 
The construction is standard and we give only a summary of it here. Suppose that 

a I ~ 

• . - x ~ - - ' X o - - - ' K c - ' O ;  • - .  }'1 ' r o - - - ~ K ~ m - , o  

are respectively KG- and K(G/H)- free  resolutions of the trivial module. Minimal 
resolutions could be chosen here. We insist that X o =_ KG, Yo = K ( G / H ) .  Note that 
the modules Yr are KG-modules on which the elements of H act trivially. That is, 
the radical of K H  annihilates Yr for all r>_0. Now form the double complex 
Z= ~ Z~,s where Zr, s = Y r ( ~ X s  . Each Zr, s is a free KG-module since Xs is free. We 
~_e~ a free KG-resolution 

(91 
• "Z2 °2'Z1----*Zo ,K--*O (Z,e) 

where Z. = ]]r+s=. Zr, s. The spectral sequence is defined beginning with its E0 term, 
E0 = {E~' s }, where 

E~' s = HomKc (Zr, s, M)  = HomK(c/ze~(Yr, Hommc(Xs, M)). 

One must check that the usual isomorphism works with the given coalgebra struc- 
ture. So E0 is a double complex with two d i f f e r e n t i a l s  tJ":E~'S*E~ +l's and 
d':Eo'S ~E~ 's+l given by 

,~"(f)=(-1)r+~+~f°(O"®l)  and & ' ( f ) = ( - 1 y + ~ f o ( l ® o o ' ) .  

~_et Eg = Y.r+s=. E6' ~. The total differential & = &' + d" : Eg --*Eg + 1 is (except for 
possible change in sign) that induced by O on Z. Consequently the total homology 
of this complex is Ext~:o(K, M).  

Now let &':E~ 's+~ be the zeroth differential do:Eo-,Eo. It follows that the 
homology of E 0 with respect to do is E 1 = {E~"s} where 

E~" s ~ Homx(o/n)( Yr, Ext~r(K, M)). 

Let dl'E['S---,E[ + l,s be the differential induced by 8". Its homology is E 2 = {E~ 's } 

where 
r , S ~  r E~ = Ext/¢(C/H)(K, Ext~.H(K, M)). 

The higher differentials are defined in the usual fashion. 
It is possible to be very specific about the definitions of the higher differentials. 

An element aoeE~ '~ represents a cocycle ti0 under arm_ 1 in E~ s (m_>2) if and only 
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if d~'(a0)= 0 and there exist ai ~ E~ +i' s-i, i = 1, ..., m -  1 such that t~'(ai)=-&"(ai_ i), 
i = 1,..., m - 1. Then dm(ao) is defined to be the cohomology class of g"(am- 1) in 
Er+m. s-m-1. Numerous details remain to be checked. 

The spectral sequence has a filtration ~ - d e f i n e d  on the E0 term by 
~t(E0) = ~.~,_,E~ "s. Hence an element in Ext~6(K,M) is in ~(Ext~G(K, M) ) if and 
only if  it can be represented by a cocycle (with respect to the total differential) in 
~t<_r<n Homxa(Zr, s, M).  The spectral sequence converges in the sense that 

n 1 (ExtKo (K, M)) = Eg . ~(Extxa  (K, M)) /~ t  - n _ t,n-t 

It may be isomorphic to the Lyndon-Hochschild-Serre spectral sequence (see [9]). 
Whether it is or not, it does share the following very important properties with the 
L-H-S  sequence. 

Proposition 2.1. The kernel o f  the restriction map reso.n: Ext~G(K, M ) ~  
Ext~:H(K,M) is exactly ~(Ext~G(K,M)). The image o f  the inflation map 
infc/ . ,  6: Ext~(c/H)(K, M) ~ Ext~c (K, M) is j r  (Ext~c (K, M)). The cup product 
respects the filtration in the sense that 

Jt(Ext~o (K, M)).  ~u(Ext~cG(K, N)) c_ ~ +  u(Ext~:o(K, M ® N ) )  

for  all KG-modules M and N. 

The last statement follows from the fact that the cup product is defined by com- 
position with a chain map tz : (Z, e ) ~ ( Z ® Z ,  e®e) which lifts the identity homomor- 
phism on K. However such a chain map can be defined by taking the tensor product 
of  chain maps /z': ( X , e ' ) ~ ( X ® X , e ' ® e ' )  and /z": ( Y , e " ) ~ ( Y ®  Y,e"®e") and 
making an appropriate change in signs. 

Before proceeding further we need to establish some facts about ~(K). The 
following is well known and its proof is left to the reader. 

Lemma 2.2. The first two terms o f  a minimal projective KG-resolution o f  K have 
the form 

F 1 ~KG ,K-'*O 

where ~ is the augmentation map, F1 is a free KG-module with KG-basis al , . . . ,  an 
and aj (at)=X, c_c. KG. The kernel o f  al, which is isomorphic to t2Z(K), is generated 
by the elements 

bi=XiP-la,, i= l , . . . ,n  

and 
cij=Xgai-Xiag, l <i<j<_n. 

That is the elements bl, .... bn,ca, z,. . . ,cn_l, n form a basis f o r  Keral modulo its 
radical. 
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Since K is an irreducible KG-module, Ext~c(K,K)-~Homro(12"(K),K). For 

suppose that  

01 c 
... a?,F,---*Fo , K ~ O  

is a minimal projective resolution of K. Because 0(F.+ 1) c_ Rad F,,, any homomor-  
phism from F.  to K is necessarily a cocycle, and all coboundaries are zero. Hence 
~ : h  cohomology class is uniquely represented by a cocycle which factors through 

~-- quotient F.~F. /aF .+I=I2" (K) .  With the notat ion of Lemma 2.1, let 
~ E x t 2 a ( K , K )  be defined by (i(bj)=t~tj, (t(Cky)=O. The elements ( 1 , - . . , ( ,  
together with the identity element 1 e Ext°c(K, K) generate a polynomial subring 
P(G, K) of g(K). Let/']i e Ext~ca(K, K) be the element represented by the cocycle 
h, :Fl  ~ K  defined by h,(aj)=Sij. The following is well known. 

Proposition 2.3. l f  p > 2, then as rings 

d~(K)= P(G,K)(~A 

where A is the exterior algebra generated by 1 and ~1,..., 8n. 
?f p = 2, then d(K) is a polynomial ring generated by ril,..., qn. In the latter case 
=rl 2, . 

Suppose that H is a maximal subgroup of  G. The classical definition of the Bocks- 
tein element flH e Ext2o (K, K) is that it is the image under the Bockstein map of  the 
cohomology class in HI(G,K) of  a suitably chosen non zero cocycle v: G-~ G/H--  
Z /pZ  c_ K. It can also be defined as the image under the inflation map 

inf :  EXtK(O/H)(K, K) Extra(K, K) 

of a 'canonical  generator '  in Ext2(c/t4)(K, K). When H is a shifted subgroup of 
KG, a Bockstein element fin can be defined using the second definition. In any case 
3 .- is contained in E~g ° term of  the spectral sequence, and in fact is the image under 

1 7 2 , 0 . _ , 1 7 2 , 0  of  the chosen generator b e E2 2'° = ExtZ(c/H)(K, K). The choice ~- map J'~2 ~-~o~ 

of the generator is not really important  since a different choice will change p/~ only 
by a nonzero scalar multiple. 

Proposition 2.4. Let H be a maximal shifted subgroup of  KG. Then flH e P(G, K). 

Proof .  Let H = ( u  1 . . . .  ,Un_I) where u, = 1 + Ui, Ui = r, a,jXj. Choose (a,,l, ... ,a,n) 
so that  Det A = 1 where A = (ao). Let 

A - l  = (Yu), u. = 1 + U., U. = ~ a.sXj. 

7,;,: a KG-projective resolution of K, we use the one given in Lemma 2.2. The 
=.,G/H)-resolution is given by 

O' e '  
E l ---*E 0 ~ K ~ 0  
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where Eo=E 1 =K(G/H) ,  e" is the augmentat ion map and O' is multiplication by 
Un. Let e0eE0, el e E l  be generators chosen so that e(e0)= 1, O'(el)= Uneo. Then 
the kernel of  O' is generated by up- le l  and is isomorphic to K. Our chosen 
generator of Ext2tG/H)(K,K) is the cohomology class of  the cocycle 
f :  QE(K(G/H))~K defined by f(UPn - lel)  = 1. 

The chain map la:(F,e)--*(E,e') can be described as follows. Let/a0(1) = e  o. The 
kernel o f / t  o is generated by all U i, 1 <_i<_n. For each i, let af= ~ aoa j. Then 
O(ai')= Ui. So le t / t  I :Fl  ~ E I  be defined by/21(a[) = 0  if i , n ,  and al(an) = e l .  Note 
that  Eo, E 1 are KG-modules on which H acts trivially and /a0,/a I are KG- 
homomorphisms.  It is easy to check that/~ commutes with the boundary maps.  Let 

/~ : Q 2 ( K )  ~Q2(K(G/H))  

be the induced map on kernels. The inflation of  the chosen generator 0 is the class 
of  the composition f ° B .  To prove the proposition it is only necessary to show that 
/~(c~/)=0 for all l<_i<j<_n. 

N o w  

So lal(ai) = y,nel. Also 

In particular since Ujel = 0 whenever j <  n, X i ' e l  = Yi, U, el. Therefore 

lal (Gj) = Xj Yine I - X t Yjnel = O. 

This proves the proposition. 

Although we will not require this fact it should be noted that  the coefficients 
a l  . . . .  , an in the expression flu = 2~ a, (, are effectively computable.  The spectral se- 
quence tells us that  resom(fll4)= 0 and hence res~,<u,)(flH)= 0 for all i. But by Pro- 
position 2.20 of  [3], resc,<u,>(fl/4) is exactly ala/~ + - ' - + a n o ~  times the canonical 
generator of Ext~<u,>(K,K). If  we also insist that reso,<u,>(PH) be the chosen 
generator,  then o ' l , . . . ,  on is the unique solution to the set of  equations 

n 

eti~aj=3in, i= 1,.. . ,n. 
J = l  

_ p Hence o) - ~%. 
Of  course fin depends on the choice of  U, but only up to nonzero scalar multi- 

ple. The choice that  makes Det A = 1 is natural  in the sense that it makes 

c,= E g=II 
gEG"  t t 

where G ' = ( u l  . . . .  , u,,). 
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The following is Alperin and Even's generalization of  a lemma due to Quillen and 
Venkov [11 ]. The proof  in [1] is correct even in the case when H is a maximal shifted 
subgroup and the alternate coalgebra structure is used. 

Proposition 2.5 [1]. Let H be a maximal shifted subgroup o f  KG and let fizz be the 
corresponding Bockstein element. For a KG-module M, let 5~ be the filtration on 
Ext~.c(M,M) arising f rom the spectral sequence with respect to H. Then 
r::;!t(vlication by BH induces a homomorphism from g(M) onto ~2(g(M)). 

We will also require the following result. 

Lemma 2.6. Let G be any finite group. Suppose that M is a KG-module and that 
( e  Extra(K, K) where n is even i f  p>  2. Let l eExt°c(M,  M) be the identity ele- 
ment. Then the cup product ( I e  Ext~c(M, M) is in the center o f  g(M). 

Proof. Throughout  the proof  
6°(M) -=- Entre G (K, HomK(M, M)). Let 

we use the standard isomorphism 

• "-~FI  O--~Fo e , K ~ O  

be a projective KG-resolution of  K. In the usual way we can form the tensor product 
of the resolution with itself to get the resolution 

O' 8@~ 
"'" ~ X 1  --- '  X0 K ~ 0  

where 

An= ~ F~®F~ and O'(Xr®Xs)=ax,.®Xs+(-1)"x,.®Oxs, 
r + $ = n  

f:.: x, e F,, i = r, s. Also there exists a chain homomorphism p : (F, e) ~ (X, e ® e) 
such that the diagram 

• .. , F  I , F  0 

--. 'X1  ' ) t o  

commutes. 

, K  ,0  

,K  ,0 

Let y : F  n-~K be a cocycle that represents (. Then ( I  is represented by the co- 
cyzie y':FnHOmK(M ,M)  where y ' (a)=  y(a)I for a e F  n. Let 0 be an element of  
v,,J. ~v HomK(M ' M)) and suppose that 0 is represented by 

0': Fm "* HomK(M, M). 
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Then ((I)O is represented by q/:Fn+m ~ H o m x ( M ,  M)  where q/= a o (7'@0") °].lm+ n 

and 

a :  HomK(M, M ) ® H O m K ( M ,  M ) ~ H o m x  (M, M)  

is the composition pairing. 
Let v: (X,  e®e)- - , (X ,e@e)  be the chain homomorphism given by 

V(Xr®Xs)=(--1)rSXs@Xr for x r ~ F , , x s ~ F s .  

It can be easily seen that a 'v  = va'  and that v lifts the identity on K. Consequently 
v/z :(F, e ) ~ ( X ,  e ®e )  is also a chain map and ((I)0 is also represented by the cocycle 
~,' = tro (y'@O') o v o lz. However I commutes with every element of  HomK(M, M) 
and,  because of  the hypothesis on the degree of  (, t r o ( y ' ® O ' ) o v = t r o ( O " ® y ' ) .  
Since the cocycle fro (0 '@ ? ' )o /z  represents 0((1) we are finished. 

3. Nilpotent elements in d°(M) 

Throughout  this section G = (x l , . . . ,  x,,) is an elementary abelian group of  order 
pn. We keep the same notation as in the previous section. The following is the 
main theorem of this paper. 

Theorem 3.1. Let  M be a KG-module  and suppose that OeExt t rc (M,M) ,  t>_O. 
Then 0 is nilpotent i f  and only i f  resc,<u,>(O) is nilpotent f o r  every a:/:O in V(M). 
Moreover i f  0 is nilpotent, then there exists an integer q = q(n, t, Dim M), depending 
only on n, t, and Dim M, such that 0 q = O. 

The 'only if '  part  of the first statement is obvious because the restriction map is 
a homomorphism.  The theorem is clearly true when t = 0. For the case in which 
n = 1, i.e. G is cyclic, we refer the reader to the next section. The structure of  ~(M) 
is written out explicitly in Proposit ion 4.1. So in this case, the first statement of  the 
theorem holds simply because the restriction map is an isomorphism, while the 
second is true because BI (see (4.1)) is a finite-dimensional algebra. 

The proof of  the theorem requires the following fact which we state is a general 
context. 

Proposition 3.2. Let  K be an algebraically closed field, let R = K [ (  1, . . . ,  (n] be a 
polynomial  ring in n variables, n>  2, graded by degrees. That is, let R l be the K- 
linear span o f ( l ,  ...,~n. Then R = K O R 1 G R ~ ( ~ . . . .  Le t  A = ~n~oAn be a finitely 
generated graded R-module. We say that an element l ~ At  satisfies property PR(A) 
i f  f o r  any nonzero element r~R1 there exists an element P e A t _  l such that rl '=l. 
I f  I ~ At  satisfies PR(A), then there exist nonzero rl, ... , rk ~ R l such that k < Dim A t 

and r I ... r kl = O. 
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Proof.  Let S be the subring S--R[(1,(2  ]. Note that  l satisfies Ps(A) and also 

satisfies condition Ps(A')  where A ' =  ~].___,_ ~A~. Let B =  ]~n>~A. and let 

q~ : A '  ~ A ' / B = _ C  

be the quotient map. Clearly ~0 is an injection on At_ 1 and At.  In fact, as K-vector 
spaces C = A t - l G A t  • Moreover S 2- C =  {0} and ~(l) satisfies Ps(C). 

~ssume that C is indecomposable as an S-module. A complete classification of  
" ::ite-dimensional indecomposable S-modules M with S2M= {0} is given in [8, 
?roposi t ion 5], and C must be isomorphic to one of  these. It is an easy exercise to 
show that since C contains the element ¢(1):#0 satisfying Ps(C),  then C cannot  be 
of type (iv) in the classification scheme of [8]. Therefore it can be shown that  one 

of the two following cases must occur. 

Case I. There exist nonzero elements rl, rze S and bases {al, . . . ,  am}, {al, ..., am} 
of At-  ~ and At, respectively, such that  

¢ f 

r l a t = a ~ ;  r 2 a i = a t 4 _ l ,  l < i _ < n -  1; r 2 a m  = 0 .  

This situation corresponds to cases (i) and (ii) of the classification scheme. Note that 
t?ere is a misprint in case (ii) of  [8]. Case (i) of [8] reduces to our Case I because 

i~ algebraically closed and every irreducible polynomial  in K[x] has degree one. 
Case II. There exist nonzero elements r l , r 2eS l  and bases {a l , . - . , a~+ l} ,  
t ¢ {ai, ...,am} of At_ 1 and At, respectively, such that 

rla l=O; rla z=a;_l,  l < i < m ;  

t , 

r 2 a ~ = a z ,  l<_i<m, r 2 a m + l = O .  

This corresponds to case (iii) of  the scheme. 
m t We claim that in either case r2 aj = 0 for all j =  1, . . . ,  m. For in situation I 

' t m , - j + l  J - - 0 .  r2aj=r2rlaj=rlr2aj=rlaj+1, and r 2 aj=r~ n r2a m 

._. Case II, 

t r ,.rn,.,I _ ~.mlj+ 1 ld22 = O. r2aj=r2rlaj+l=rlaj+ 1 and .2 - j - - I  am+l 

Therefore r~' annihilates A t and the theorem is correct if C is indecomposable as 

an S-module. 
Suppose that C =  C I O ' - - ® C k  where each (7, is an indecomposable S-module. 

Let Cj = cp-1(Cj). For every j ,  B c_ Cj. Moreover 

Let mj = Dim(AtNCj) ,  and let l=l l  + ... + lk where/j  e CjNAt .  Since S~(At_ I NCj)  c 
~ ~.c'ICj, we must have that b satisfies condition Ps(Cj).  Moreover Cj /B=Cj  is an 
-.decomposable S-module. Therefore for each j = 1, . . . ,  k, there exists rj e Sl such 

that rjJlj = 0. Note that if lj = O, then rj can be any element of  $1. 
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Hence 

r~n' . . . r~ff  = O, 

and since ml + " -  + me = Dim A t the proof of the proposition is complete. [] 

Proof  of Theorem 3.1. Suppose that 0eExt~rc(M, M) has the property that 
resc,<u~>(0) is nilpotent for every a e V(M). By the remarks following the statement 
of  the theorem, we need only show that 0 is nilpotent and we can assume that t >0  
and n > l .  By induction on I G[ there exists q = q ( n - 1 , t ,  DimM)  such that 
resG, H(8 q) =0 for all maximal shifted subgroups H of KG. For notational conve- 
nience, replace 0 q by 0 so that resG, H(O)= 0. 

Let ~ be a nonzero homogeneous element of degree 2 in P(G, K) = K[( I , . . . ,  (n]. 
Then ( =  ~ fli(i for some fli e K. Let 

W= { ct ~ K n ] rest. <,,~>(0 = 0}. 

Because ( is a linear polynomial in (l,  ..-, (n, W is a linear subspace of K n of 
dimension n - 1  (see the remark following the proof of Proposition 2.4). Let 
a l , . . . , a n - 1 6 K  n be a basis for W, and let H = ( u l , . . . , u n _ l )  where 

ui = 1 + ~ Otij(X j -- 1) for t ~ '  = ( t ~ i l ,  . . . ,  Ctin ). 
j=l 

Then H is a maximal shifted subgroup in KG and ( is a scalar multiple of fill. Let 
be the filtration arising from the spectral sequence with respect to H. Then by 

Proposition 2.1, 0 e ~ ( g ( M ) )  and 02 e ~2(g(M)). By Proposition 2.5, there exists 
0' e Ext~d 2(M, M)  such that (0'  = 02. Therefore Proposition 3.2, with R = P(G, K) 
and A = ~,_,0Ext2~(M,M) is applicable, and there exist nonzero homogeneous 
Yl , . . . ,  Yse P(G, K)  of degree 2 with Yl"'" Ys 02 = 0 and s_< Dim Extffo(M, M). 

Let I denote the identity homomorphism in Ext°6(M,M).  We know from 
Lemma 2.6 that if  y ¢P(G,  K),  then y l i s  in the center of g(M).  For each j =  1, ..., s, 
there exists 0j e Extffd2(M, M) such that yjOj = 02. Hence 

0 2 s + 2  = 02(~101 ) " '"  (~sOs) 

= 0 2 ( y l / ) 0 1  . . .  (YsI)Os 

= 0 , 1 I )  ".. O , f l ) 0 2 0 ~  . . .  O~ 

= YlY2 " ' "  Ys0201 "'" Os=O" 

This proves the first statement of the theorem. The second follows from the fact that 

Dim Extff~ (M, M) < (Dim £2 2t(M))(Dim M)  
and 

Dim I2(M) < I G I Dim M. 

By successively applying the second inequality we get that 2s + 2 is bounded by a 
function of [G I =pn, t, and Dim M. [] 
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Suppose that G is any finite group and M is a KG-module. let dsg(G) denote the 
set of elementary abelian p-subgroups of G. In [4] it was shown that an element 

e ExtK~(M, M) is nilpotent if and only if resa, e(() is nilpotent for all E e gsC(G). 
This fact can be used to characterize the radical of ,~'(M). 

For each E e d ~ ( G )  choose a set of generators xl , . . . ,x~ where ]El =pn, such 
that for each a e K  n we get a cyclic shifted subgroup (ua), u~= 1 + ~  oti(x ~- 1). 
Then we may define a rank variety Ve(M)= Ve(Me). For each E, a ~ VE(M) let 

RE, ~ = resE. <u~> (rest. e (,~(M))) 

and let SE,, be the kernel of  the composition 

resG, <u~> 
g°(M) ' R~,a --' Re, a /Rad RE,..  

Theorem 3.3. 

R a d ( d ( M ) ) = e ~ t a , ( ,  ~ ~M, SE.~) 

~nd Rad(g°(M)) is a graded nilpotent ideal in g°(M). 

Proof. The theorem is a generalization of Theorem 10.5 of [3] and the proofs are 
essentially the same. let J =  ~ a .  SE, a. By Proposition 4.1 (next section), Theorem 
3.1, and Theorem 3.1 of [4], J is generated by homogeneous elements and every 
homogeneous element in J is nilpotent. Clearly J must contain the radical of ¢(M) 
since each restriction map ¢(M)--'RE, c, is a surjection. Consequently it is sufficient 
to show that J is nilpotent. By Even's Theorem [6], ¢(M) is a finitely generated 
module over Ext2~ (K, K) which is a Noetherian ring. So g(M) satisfies the ascend- 
ing chain condition on left ideals. The proof of the theorem is completed by apply- 
ing the following variation on the Theorem of Levitzki. [] 

~'~oposition 3.4. Let  A be a graded ring which satisfies the ascending chain condi- 
:ion on left ideals. Let  U be a graded left ideal with the property that every homo- 
geneous element in U is nilpotent. Then U is a nilpotent ideal. 

Proof. We proceed almost exactly as in the proof of Levitzki's Theorem in [9, p. 
199]. By hypothesis there exists a finite set {al, . . . ,  an} of elements which generate 

n U. For each i there exist homogeneous elements bij ~ U such that ai = ~j'=t bu. 
Hence the set {b,j} also is a generating set for U. That is, U=F. Abij and 
U a = ~ Ub U. Let C be the multiplicative subsemigroup of A generated by the bij's. 
Then U k = UC k-  1 for all k > 1. However if D is any subsemigroup of A, the left 
a~rdhilator (0 : D)  of D is a left ideal in A, and hence the multiplicative semigroup 

.A satisfies the ascending chain condition on objects of the form (0 : D). It follows 
kom Proposition 1 on page 199 of [9] that any nil subsemigroup of A is nilpotent. 
In particular C is nilpotent and U is a nilpotent ideal. 
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4. Equality of varieties' 

We begin this section with a statement about  the ring ¢H(M)=Ext~ct~(M,M) 
where M is a module over a cyclic group H of  order p .  The result is similar to that 
given in section 10 of  [3] for the case in which p = 2. Although the p roof  is somewhat 
more  complicated when p is odd, it is s traightforward and we leave it as an exercise 
for  the reader. When p = 2 ,  Proposition 4.1 is the same as Lemma 10.1 of [3] 
because in this case BI =B2 and all of  the pairings, ~i, given below, are the same. 
The coalgebra structure used here is the s tandard one. In particular 

(xf)(m) =x f (x - lm)  for x e H ,  m eM,  f e H o m r ( M , M  ). 

Let H = ( x )  be a cyclic group of  order p and let M be a KH-module.  Let 
B 0 = HomKn(M, M) .  Suppose that B~ is the set of  all f e B  o such that f factors 
through a projective KH-module.  Then B~ = / q  H o m r ( M ,  M )  where /-1= ~,_0 xt.p-~ " 
Let B 1 =Bo/B ~ and let t r : B  0--*B 1 be the quotient map.  Suppose that 

U= { f  ~ n o m r ( M , M ) ] I q f  =O } 
and 

V= { ( x -  1 ) f ] f e H o m r ( M , M ) } .  

It is easy to see that  V__. U. Let BE = U/V, and r :  U ~ U / V  be the natural  quotient. 
We have bilinear pairings 

~I : BI x BI ~ BI , (P2 : BI × B2--'~ B2, 

tp3 : B2 × B1--* B2, ~04 : B2 × B2 ~ B1, 

which are defined as follows. Suppose that f l , f 2 ~ B o ,  hi, h2e U. Then 

¢Pl(O'(fl), tr(f2)) = o ' ( f  1 o f 2 ) ,  

( P 2 ( o ' ( f l ) ,  r(hl)) = ~ ' ( f l  o hl), 

(P3 (r(hl), tr(fl )) = r(hl o f l ) ,  

(P4 (r(h 1 ), "c(h2 )) = tr(h I v h 2) 
where 

(hlvh2)(m)= ~ xihl xJ-ih2(x-Jm) 
i=0 j I 

for  all m e M. The composition product gives a pairing B 0 × Bo~Bo and by com- 
posing with tr we also have pairings B 0 x B I ~ B I ,  BoxB2~B2 ,  etc. 

Proposition 4.1. Let R = ~h~_o Rn be the graded ring in which R n consists o f  all 
(n, 9)) for  

9)eBo if n=O, 

9) ~ B1 i f  n > 0 is even, and 

9) ~ B2 i f  n is odd. 
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Addition in R n is given by 

(n, ~"I ) + (n, ~2) = (n, Yl + 9'2). 

The multiplication R ,  × Rm ~ Rn + m is given by the formula 

(n, yl)(m, Y2) = (n + m, ~o(Yl, Y2)) 

.,,here ~o is the appropriate pairing. Then R =gH(M) as graded rings. Suppose that 
:s any graded subalgebra o f  R such that S contains an element o f  the form (2t, y) 

:~r t > 0 and y invertible in B1. Then the radical o f  S is a nilpotent graded ideal 
in S. 

The point of the proof is that there exists a projective KH-resolution 

32 01 e 
... , F1---.  Fo--- ,  K--, 0 

where F, = KHen= K H  and #n(en) = ( x -  1)en_ l when n is odd, #n(en) = I4en_ i if n is 
even. So, for example, if n is even, then the element (n, or(f))~ Rn corresponds to 
the cohomology class in Ext~cn(K, HomK(M, M)) of the cocycle ~ where ~u(en)=f. 
-'2e last statement is proved essentially the same way as Lemma 10.2 of [3]. 

Suppose now that G =(x  l, . . . ,  xn) is an elementary abelian group of order p". 
Let H =  (u a) be a cyclic shifted subgroup of KG where 

u s = l +  ~ a i (x , -1 ) ,  o t=(a l , . . . ,o tn )eK n, a:/:O. 

If M is a KG-module, then there exist KG-submodules M 0 and MI such that Mt is 
a free KH-module, M0 has no free submodules and MH=MoO)M I . If  n > 0 ,  then 
EXt~H(M, M) = Ext~H(M0, M0). Suppose that f , f ' e  B0 = HomKH(M0, M0) and that 
tr(f)  = tr(f ') .  It can be easily seen that f is invertible if and only if f '  is invertible 
and f is nilpotent if and only if f '  is nilpotent. 

The proof of the following is very similar to that of Proposition 10.3 of [3], and 
~':e will not repeat it here. The only modifications necessary are those noted in the 

_-eceding paragraph. It should be emphasized again that the standard diagonal map 
is used here to define cup products. Since the action of ( (K)  on g(M) depends on 
the coalgebra structure, this actions does not necessarily commute ~vith restrictions 
to shifted subgroups. 

Proposition 4.2. With the above notation let ( be an element o f  degree 2t in P(G, K), 
and let I t  Ext°o(M, M) be the identity homomorphism. Suppose that resc.it((I) = 
(2t, tr(f)) for  f e  B 0 = Homr(Mo, M0). I f  rest.H(() , :0,  then f must be invertible 
while i f  reso, ~q(() = 0, then f is nilpotent. 

For a KG-module M, let J(M) denote the ideal in P(G, K) consisting of all ( such 
zhat ( I =  O. That is J(M) is the annihilator in P(G, K) of g(M). Let 

W(M)= {ct~KnlresG,<u~>(()=O for all ~ J ( M ) } .  
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Clearly J(M) is a homogeneous ideal in P(G, K). In [3, Proposition 2.22] it was 
shown that if (= f ( (1 , . . . ,  (n) is a homogeneous element in ~1,..-, (~, then 

resa, <u~>(() = f ( ~ , - . . ,  anP)" Y 

where y is the canonical generator in Ext~<~>(K, K), t = 2  deg(f). So W(M) is a 
homogeneous subvariety of K n. It was proved in [3, Theorem 7.5] that 
V(M) c_ W(M). The reverse inclusion was first proved by Avrunin and Scott using 
methods are different from the ones employed here. 

Theorem 4.3 [2]. Let M be a KG-module. Then V(M)= W(M). 

Proof. Let I(M) c_ K[ffl, ..., fin] be the ideal of V(M). Let ~o : K ~ K  be the Frobenius 
automorphism, a(a)=a v. Then (o induces an automorphism of P(G,K) by 
operating on the coefficients of the polynomials. Clearly 

(a(f)(al P, ..., otn P ) = [f(0q, ..., Otn)] P. 

Hence, by the remark preceding the theorem, the ideal of W(M) is in the 
radical of a-1(J(M)). Let f be a homogeneous polynomial in I(M). For 
a = (al,..., a,,) ~ V(M) we have that f(a) = 0 and a(f)(a~,..., aft) = (f(a)) ? = 0. Let 
~=(af)(ffl, ...,~'~). By Proposition 4.2, res6.<u~>(~l) is nilpotent for all ore V(M). 
Hence by Theorem 3.1, ff is in the radical ideal of J(M), and a-1(ff) is in the ideal 
of W(M). This proves that W(M) c_ V(M). [] 

5. Commutativity of cohomology rings 

In [5] it was shown that if G = SL(2, p~) and M is an irreducible KG-module, 
then the ring ~*(M)/Rad ¢(M) is commutative. It is possible that this statement is 
true for any finite group G and any irreducible module M. However the following 
theorem demonstrates that it is not true if M is only indecomposable. Let M~(K) 
denote the algebra of n × n matrices over K. 

Theorem 5.1. Let G = (x, y)  be an elementary abelian group o f  order p2, p > 5. For 
any positive integer n there exists an indecomposable KG-module M such that there 
is a K-algebra homomorphism 

~, :¢(M) ~Mn(K)  

which is surjective. 

Proof. Let X = x - 1 ,  Y = y - 1 .  Let A = ~,h=~KGai be the free KG-module 
generated by a l , . . . ,  a~. Let B _  A, be the submodule generated by the elements 

XYai, 1 <_i<_n; X P - l a j _ I -  Y2aj, 2<_j<_n- 1; 

y2al; XP-lan_l - Yah; and Xa n. 
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Let M = A lB. Then M is generated by c~ = a i + B, i = 1, ..., n. A K-basis for M con- 

sists the elements 

and 

XJc,, i = 1  . . . . .  n -  l, j = O , . . . , p - 1 ;  c,; 

Yci, i = 1  . . . .  , n - 1 .  

Hence Dim M =  n +p(n - 1). 
Observe that if m e M and Ym = 0, then m e Rad KG. M. Also if m e (Rad KG)M, 

~hen X p- Im =0. Suppose that M = M  I @ M  2. The socle of  M is the K-linear span 

of the elements Yc~, Yc.,  and y2c,, i = 2 , . . . , n - 1 .  One of the two direct sum- 

mands, say M1, contains an element of the form 

m = 0~ I YC I + ct2Y2c2 +... + ct n _ I y2cn_ I + CtnYc.. 

where al :g O. So m = YI where 

l= oqcl + ot2 Yc2  + " "  + O~nC n • 

Write l= lx+l  ~ for l l e M  1, l ~ e M  2. Now Yl~=O, so l~e(RadKG)M.  Therefore 

X P - l l = X P - l l l =  y 2 c 2 e M  1. Write c2=lz+l ~ for 12eMl, 16eM 2. Since Y~16=O, 
/ ~ ( R a d K G ) M + K c I + K c  ". So for some f l e K ,  X V - l l 6 = f l x P - l c i e M l f 3 M  2. 
Therefore ,8=0 and XP-ll6=O. This proves that x p - l c 2 = y 2 c 3 = X P - l l 2 e M I .  
Continuing in this fashion we show that M I contains the entire socle of  M. 

Therefore M =  M1 is indecomposable.  

Let H =  (x>. Then M e = Mo(~M t where M 0 has basis {c,, Yc, [ i = 1 ... .  , n - 1 } and 
Mi has basis {XJ~ri[ 1 <_i<_n - 1,0_<j_<p-  1}. Clearly M 1 is a free KH-module and 

Mo is a direct sum of n-copies of the trivial KH-module.  In the notation of Pro- 

position 4.1, 

~r(Bo) = B1 = Homrn(Mo,  Mo) = HOmK(Mo, M o ) - M , ( K ) .  

~Iso the product formula says that two elements of  odd degree in gl~(M) have pro- 

5~ct 0, since H acts trivially on M0. Therefore we have a homomorphism 

O : g n ( M ) ~  Homx(Mo, Mo)= Mn(K) 

where O(n, 7) is a(y) if n is 0, y if n > 0 is even, and 0 if n is odd. Let qt : 6~(M)---, 

Mn(K) be the composit ion q/= 0 o resG, n- It remains only to prove that q/is onto. 

It can be seen that there is a KG-homomorphism whose values on generators are 

f ( c l ) = 0 ,  f (ci)=c,_l  for 2<_i<_n-1, and f ( c . ) =  Yc._l .  Then a ( f ) : M o ~ M 0  has 
the property that tr(f)(YCl) = O, a ( f ) (Yc3  = Yc,_ 1 for 2__ i < n - 1 and a( f ) (c . )  = 
Yc._ 1. We will show that  there exists h e HOmrH(M, M) such that (2, a(h))e 
:eSc, H(g(M)) and h(Yca)= c., h(Yc,)= h(cn)=0 for i > 1. This is sufficient to prove 

~:he theorem since tr(f), tr(h) generate Homx(M0, Mo) as a ring. 
As ment ioned before Ext26(M,M)=Ext26(K,  Homx(M,M))  is a quotient of  

Homrc(g22(K),Homx(M, M)).  In this case f22(K) is generated by three elements 
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b l ,  b2, c such that 

X b  1 = Y b 2 = O ,  Y b  I - - X P - I c ,  X b 2 =  y p - l c .  

If  y :~2(K) -~Homx(M,M)  is a KG-homomorphism, then resc, z4(cl(y))- 
(2, a(y(bi))). Define the 2-cocycle ~, by ~,(bl)=h, y(c)=g, ),(bE)=0 where 

h(Ycl) = cn, h(KHc I ) = O, h(KGci) = O, i >_ 2, 
and 

g(Ycl)=O, g(Xici)=O, 0_<i_<p-2,  

g ( X  p -  Ic l )  = --C n - X p -  l Cnl , 

g(KHcz) = O, g(KGci) = O, 3 < i< n. 

It can be checked that Xh=O, Yh=XP- lg ,  and YP-lg=O. So y is a homomor- 
phism, and resG, z4(y) = (2, a(h)) as desired. 

Remarks. The above theorem is also true when p = 3. This case, however, is com- 
plicated by the fact that the element h ~ HomK(M, M) is not the image under q /of  
an element of degree 2, but rather of degree 2 ( n -  1). 

The following theorem shows that for any finite group G and any KG-module M, 
a simple g(M)-module is defined by a surjection g(M)~Mn(K) ,  for some n. An 
interesting question is whether every such surjection must factor through the restric- 
tion map to some shifted cyclic subgroup of KG. That is, does every maximal ideal 
in ¢(M) contain the kernel of the restriction to some cyclic shifted subgroup. 

Theorem 5.2. Let G be any finite group and let M be an &decomposable KG- 
module. Then every irreducible J(M)-module has finite dimension over K. 

Extro(K, K)c_ g(K) and let R be its image in g(M) under the Proof. Let R ' =  ~,~0 2n 
map g ( K ) ~ g ( M )  given by cup product with the identity. By Lemma 2.6, R is a 
subalgebra of the center of g(M) and R is generated as a K-algebra by a finite set 
of elements {Yl,-..,Yr}- Moreoever, by Even's Theorem [6], E(M) is a finitely 
generated module over R. That is, g ( M ) =  ]~= i ROi for s o m e  0 i e,~(M). 

We follow the argument on page 227 of [9]. Let f t  be the polynomial in elements 
of  Y(M) given by 

f t (x l , . . . ,  xt) = ~ sgn(o') (xao)"'" x,(n)) 
t7 

where the sum is over all a in the symmetric group St. Note that f t  is R-linear in 
any of its variables. Also if xi=xj for i , j ,  then ft(xl, . . . , x t )=0 .  Since g(M) is 
generated as an R-module by s elements, we have that fs+~ is identically zero on 
g(M). Therefore g(M) is a P.I. ring. 

Let W be an irreducible g(M)-module. Let U be the annihilator in g(M) of W. 
Then U is a two-sided ideal and S = g ( M ) / U  is likewise a P.I.  ring. Because S has 
a faithful irreducible module, namely W, it is a primitive ring. Hence by Theorem 
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1, page 226 of [9], the center of  S is a field L and S is a finite-dimensional algebra 
over L. Let d=DimL(W).  Then the action of  S on W defines a homomorphism 
g/" S~Md(L).  Now S is generated as a K-algebra by the elements )'iOj + U, 1 <_i<r, 
1 <_j<s. Consequently L is generated as a K-algebra by the d2rs entries of  the 
matrices ~(y, Oj + U). That is L is a finitely generated algebra over K and it must 
be a finite algebraic extension of  K. This proves the theorem. 
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